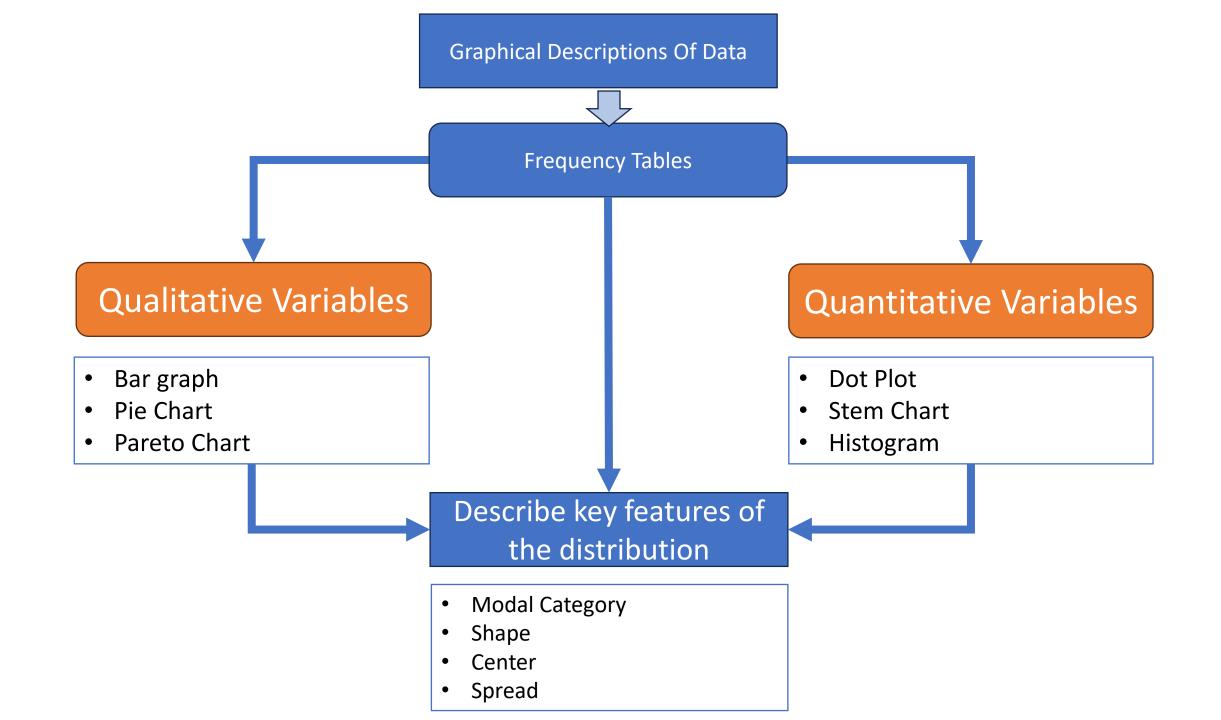
Lecture 3 Describing and Visualizing Distributions

Review

<u>.</u>

Statisticians use to data to answer questions about populations

A population is the set of ALL observations of interest


Our data is usually a subset of **observations** from the population called a **sample**

The way in which we collect our data is called the sampling design

Review

- A natural first step of statistical description is to look at graphical summaries of the observations for our variables
- A **distribution** of a variable gives (a) the values that occur and (b) how often each value occurs
- A frequency table is a tabular descriptions of the distribution of a variable – it can be applied to either quantitative or qualitative variables

Frequency Tables for Continuous Variables

- The number of possible values is usually very large
- Convert continuous values into discrete groups (sometimes called bins):

Steps:

- 1. Divide the range of the variable into a set of non-overlapping intervals
- 2. Count the number of values that fall into each interval

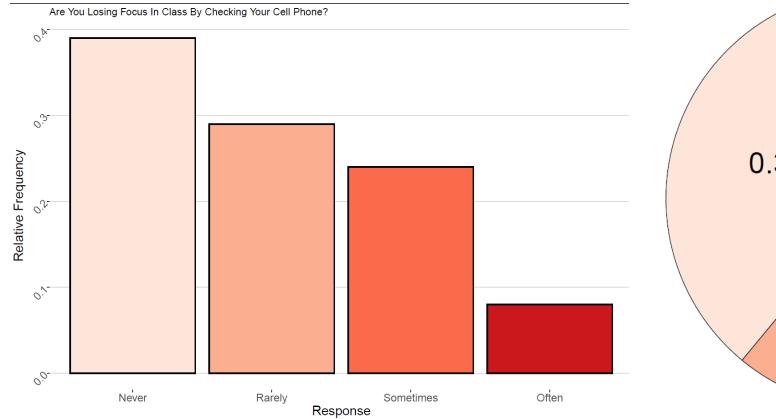
Example: Old Faithful Eruption Times

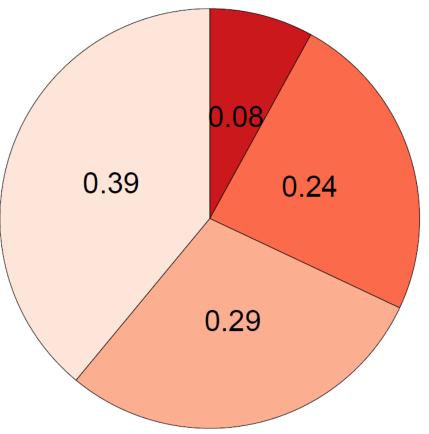
Observation	Eruption	Waiting
	Time	Time
1	3.600	79
2	1.800	54
3	3.333	74
4	2.283	62
5	4.533	85
6	2.883	55
7	4.700	88
8	3.600	85
9	1.950	51
10	4.350	85
11	1.833	54
:	:	
•	•	
272	4.467	74
	1.101	11

Old Faithful Eruption Times: Frequency Table

Eruption Dura- tion (Min)	Frequency	Relative Frequency	Cumulative Relative Frequency
$1.5 \le X < 2.0$	55	0.20	0.20
$2.0 \le X < 2.5$	37	0.14	0.34
$2.5 \le X < 3.0$	5	0.02	0.36
$3.0 \le X < 3.5$	9	0.03	0.39
$3.5 \le X < 4.0$	34	0.12	0.51
$4.0 \le X < 4.5$	75	0.28	0.79
$4.5 \le X < 5.0$	54	0.20	0.99
$5.0 \le X < 5.5$	3	0.01	1.00

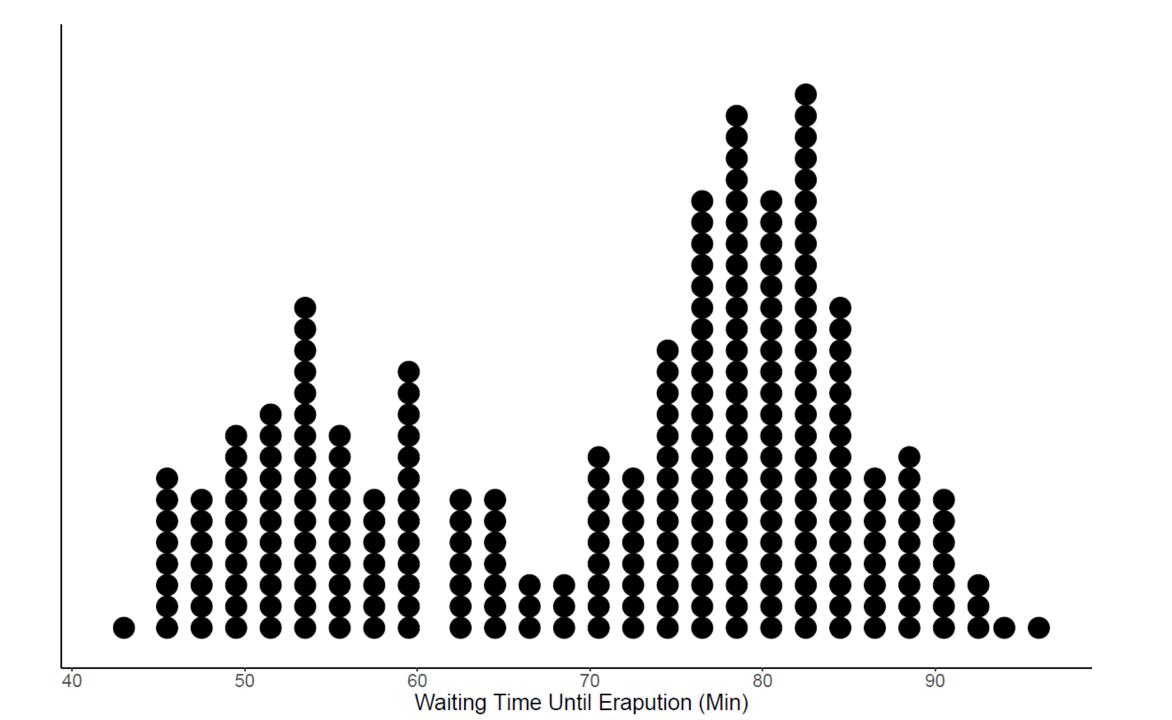
Visualizing Distributions of Categorical Data


Pie Charts - a circle divided into 'slices' corresponding to each category. The size of a slice shows the proportion of observations in a category



Bar graph – displays a vertical bar for each category. The height of the bar shows the percentages of observations in the category

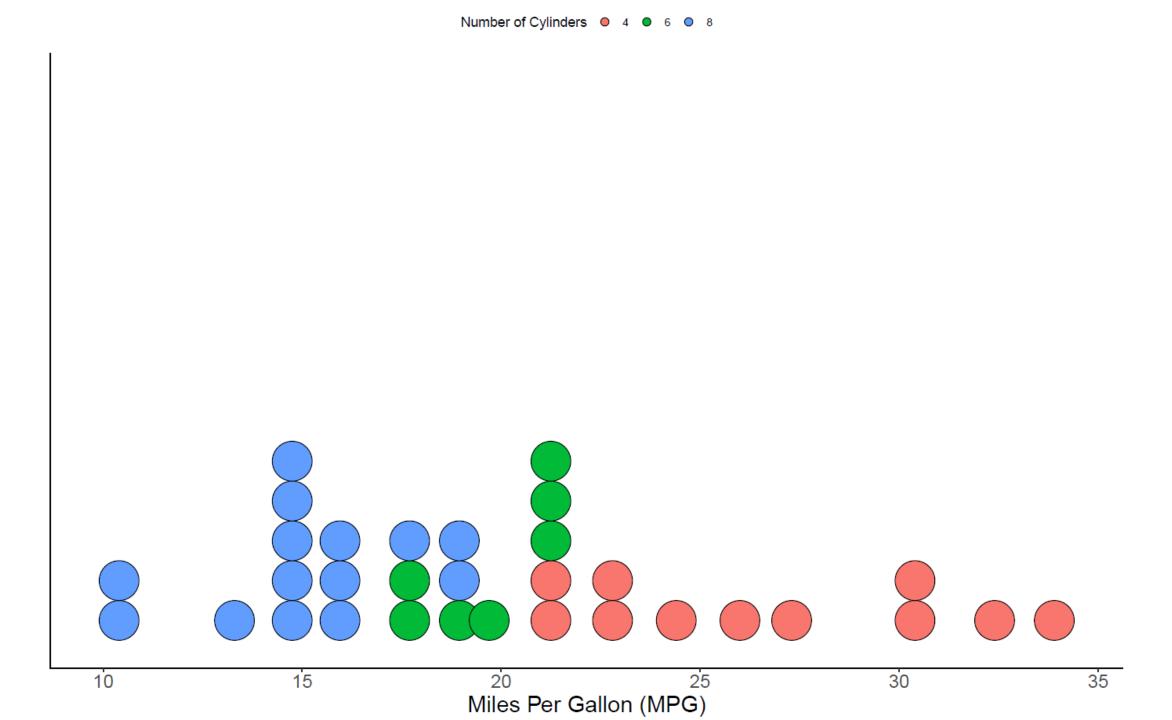
Pareto Chart - a bar chart with the categories ordered by decreasing frequency



Visualizing Distributions: Quantitative Variables

• **Dot plots** – shows a dot for each observation placed above the value for that observation

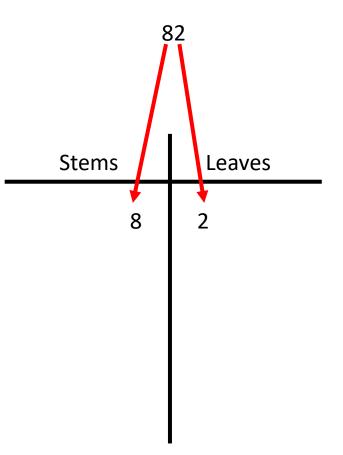
Steps to construct a dot plot


- 1. Draw a horizontal line and mark the line with regular values of the variable
- 2. For each observation, place a dot above its value on the number line
 - Works best with quantitative discrete data
 - Doesn't work well if the variable is continuous and takes on many distinct values...
 - For continuous data, the values may need to be round to the nearest tenth or integer

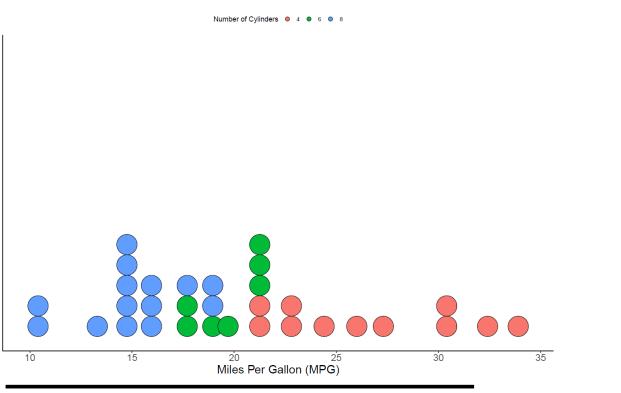
Example: MPG and Engine Cylinders

	R	Comshaft The carnshaft has pear-shaped lobes which actuate the valves - usually one inlet and one exhaust valve for each cylinder.	Observation	MPG	Cylinders	Model
		Ritor	1	21.0	6	Mazda RX4
		The piston is fitted with steel rings which fill the ap between it and the cylinder wall.	2	21.0	6	Mazda RX4 Wag
		AN THE REAL PROPERTY OF	3	22.8	4	Datsun 710
		in the second	4	21.4	6	Hornet 4 Drive
9			5	18.7	8	Hornet Sportabout
	G D OB	THE STATE	6	18.1	6	Valiant
		Eywheel The flywheel is a heavy disc attached to the end of the crankchaft. It helps to transmit the erging is governed to atta conclusion to the properties of the pistons so that the power flows evenly.	÷	:	:	:
Camshaft drive belt A toothed belt - often called the timing belt - drives the camshaft from a sprocket mounted on the end of the cranshaft rotates at half engine speed.	Crankshaft	Connecting rod The connecting rod converts the up-and-down movement of the pistons into rotary motion through a treadle action.	32	21.4	4	Volvo 142E
in ingit operation	Sump The crankshaft transmits per the road wheels through the lubricating oil for the engine's	wer to gearbox.				

nuoricating oil for the engine's moving parts. A pipe from the oil pump draws up the oil through a


Visualizing Distributions: Quantitative Variables

Stem and leaf plot – like a dot plot, a stem and leaf diagram also displays individual observations.


- **Stem** all the digits in an observation except the last digit
- Leaf the last digit in an observation

Steps to construct a stem and leaf plot

- 1. Sort the data in order from smallest to largest.
- 2. Place the stems in a column in increasing order
- 3. Place a vertical line to the right of the stems
- 4. To the right of the vertical line, fill in the leaves that correspond with each stem in increasing order

Example: MPG

Observation	MPG	Cylinders	Model
1	21.0	6	Mazda RX4
2	21.0	6	Mazda RX4 Wag
3	22.8	4	Datsun 710
4	21.4	6	Hornet 4 Drive
5	18.7	8	Hornet Sportabout
6	18.1	6	Valiant
÷	:	÷	÷
32	21.4	4	Volvo 142E

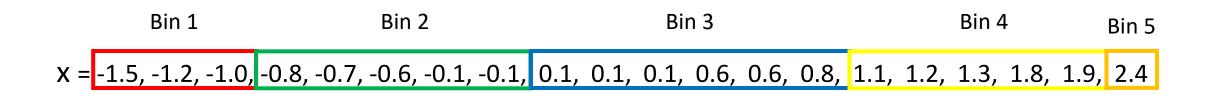
Stems	Leaves			
10	4,4			
11				
12				
13	3			
14	3,7			
15	0,2,2,5,8		•	Ι.
16	4			Leaves
17	3,8		10	4,4
18	1,7		12	3
19	2,2,7		14	3,7,0,2,2,5,8
20			16	4,3,8
21	0,0,4,4,5		18	1,7,2,2,7
22	8,8	,	20	0,0,4,4,5
23			22	8,8
24	4		24	4
25			26	0,3
26	0		28	
27	3		30	4,4
28				
29			32	4,9
30	4,4			
31				
32	4			
33	9			

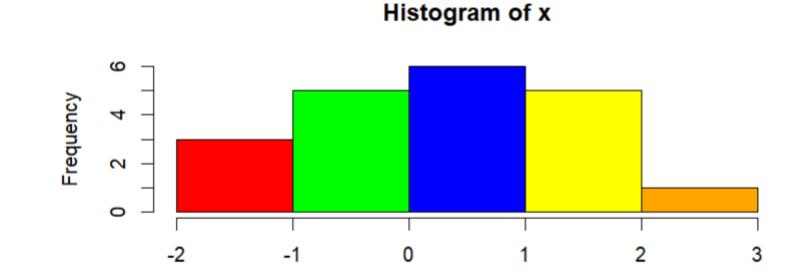
Try it out: Stem and leaf plot

Data = 4.2, 3.8, 4.6, 3.2, 2.7, 8.2, 9.1, 0.2, 1.2, 6.2

Visualizing Distributions: Quantitative Variables

Stem and leaf plots and **dot plots** are unwieldy for large *n*


Histogram – uses bars to portray the frequencies or relative frequencies of the possible outcomes for a quantitative variable


Steps to construct a histogram

- 1. Divide the range of the data into intervals of equal width
- 2. Compute the frequency of each interval (i.e construct the frequency table)
- 3. Label the x-axis with the values or endpoints of each interval.
- 4. Draw a bar over each value or interval with height equal to its frequency or relative frequency

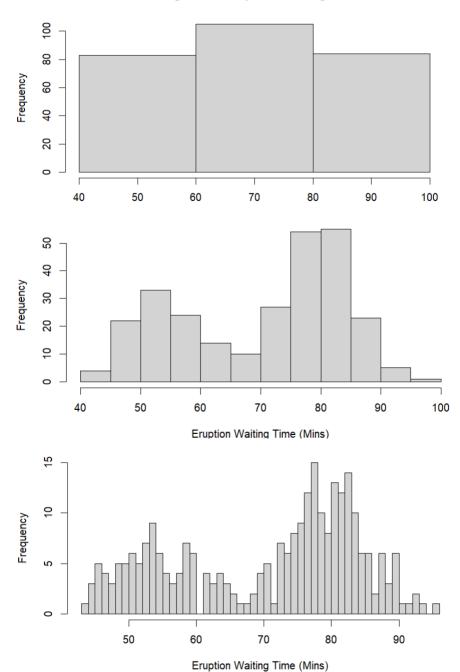
Try it out: Histogram

Consider the following n = 20 observations of a continuous variable

How to choose the number of Bins?

- How to choose the best number of bins is not a straightforward question and there is a lot of literature on the subject
- We can construct our histogram using a specific binwidth *w* or under a set number of bins *k*

•
$$w = \frac{\max x - \min x}{k}$$
 or $k = \frac{\max x - \min x}{w}$


- Square root method: $k = round(\sqrt{n})$ (A fairly safe and basic rule of thumb)
- Sturges Rule^[1]: $k = \operatorname{round}(\log_2 n) + 1$ (not great for n < 30)
- Rices Rule^[2]: $k = 2\sqrt[3]{n}$

[1] Sturges, Herbert A. "The choice of a class interval." Journal of the american statistical association 21.153 (1926): 65-66.

[2] Lane, David. Online statistics education: A multimedia course of study. Association for the Advancement of Computing in Education (AACE), 2003. - Chapter 2 "Graphing Distributions

Some tips

- If too few intervals are used, then the graph will be too crude
- If <u>too many</u> intervals are used, graph will contain many short bars and gaps. Usually between 5 - 15 intervals are enough.
- Most plotting software will automatically choose the number of bins.
- <u>ALWAYS</u> plot the histogram to get an idea about the shape of the distribution of a quantitative variable
- Is the number of observations is small (say n < 50) then it's a good idea to supplement a histogram with a dot plot or stem plot

Frequency Eruption Waiting Time (Mins) 0.30 **Relative Frequency** 0.20 0.10

0.00

Eruption Waiting Time (Mins)

Example: Old Faithful Eruption Times

Waiting Time (Min)	Frequency	Relative Frequency	Cumulative Relative Frequency
< 50 50 - 60 60 - 70 70 - 80 80 - 90 > 90	21 56 26 77 80 12	$\begin{array}{c} 0.077 \\ 0.206 \\ 0.096 \\ 0.283 \\ 0.294 \\ 0.044 \end{array}$	$\begin{array}{c} 0.077 \\ 0.283 \\ 0.379 \\ 0.662 \\ 0.956 \\ 1 \end{array}$